Palindrome Permutation II
題意:
Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empty list if no palindromic permutation could be form.
For example:
Given s = "aabb", return ["abba", "baab"].
Given s = "abc", return [].
解題思路:
updated 2015.12.4
網友神之解法
public class Solution {
public List<String> generatePalindromes(String s) {
int odd = 0;
String mid = "";
List<String> res = new ArrayList<>();
List<Character> list = new ArrayList<>();
Map<Character, Integer> map = new HashMap<>();
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
map.put(c, map.containsKey(c) ? map.get(c) + 1 : 1);
odd += map.get(c) % 2 != 0 ? 1 : -1;
}
// 奇數大於一個,無法作迴文
if (odd > 1) {
return res;
}
for (Map.Entry<Character, Integer> entry : map.entrySet()) {
char key = entry.getKey();
int val = entry.getValue();
if (val % 2 != 0) {
mid += key;
}
for (int i = 0; i < val / 2; i++) {
list.add(key);
}
}
getPerm(list, mid, new boolean[list.size()], new StringBuilder(), res);
return res;
}
private void getPerm(List<Character> list, String mid, boolean[] used, StringBuilder sb, List<String> res) {
if (sb.length() == list.size()) {
res.add(sb.toString() + mid + sb.reverse().toString());
sb.reverse();
return;
}
for (int i = 0; i < list.size(); i++) {
if (i > 0 && list.get(i) == list.get(i - 1) && !used[i - 1]) {
continue;
}
if (!used[i]) {
used[i] = true;
sb.append(list.get(i));
getPerm(list, mid, used, sb, res);
used[i] = false;
sb.setLength(sb.length() - 1);
}
}
}
}
使用dfs去作,再搭配ispalindrome來判斷是否為迴文,但複雜度太高,會超時,程式碼如下:
public class Solution {
List<String> res;
boolean[] isVisited;
public List<String> generatePalindromes(String s) {
res = new ArrayList<String>();
isVisited = new boolean[s.length()];
if (s == null || s.length() == 0) {
return res;
}
helper(s, new StringBuilder());
return res;
}
private void helper(String s, StringBuilder sb) {
if (sb.length() == s.length()) {
if (isPalindrome(sb.toString())) {
res.add(sb.toString());
}
}
for (int i = 0; i < s.length(); i++) {
if (isVisited[i]) {
continue;
}
isVisited[i] = true;
sb.append(s.charAt(i));
helper(s, sb);
sb.setLength(sb.length() - 1);
isVisited[i] = false;
}
}
private boolean isPalindrome(String s) {
int start = 0;
int end = s.length() - 1;
while (start <= end) {
if (s.charAt(start) != s.charAt(end)) {
return false;
}
start++;
end--;
}
return true;
}
}