Best Meeting Point
題意:
A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.
For example, given three people living at (0,0), (0,4), and (2,2):
1 - 0 - 0 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0
The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.
Hint:
Try to solve it in one dimension first. How can this solution apply to the two dimension case?
解題思路:
網友提供以下思路:
"為了保證總長度最小,我們只要保證每條路徑儘量不要重複就行了,比如1->2->3<-4這種一維的情況,如果起點是1,2和4,那2->3和1->2->3這兩條路徑就有重複了。為了儘量保證右邊的點向左走,左邊的點向右走,那我們就應該去這些點中間的點作為交點。由於是曼哈頓距離,我們可以分開計算橫坐標和縱坐標,結果是一樣的。所以我們算出各個橫坐標到中點橫坐標的距離,加上各個縱坐標到中點縱坐標的距離,就是結果了。"
其程式碼如下:
public class Solution {
public int minTotalDistance(int[][] grid) {
List<Integer> ipos = new ArrayList<Integer>();
List<Integer> jpos = new ArrayList<Integer>();
// 統計出有哪些橫縱坐標
for(int i = 0; i < grid.length; i++){
for(int j = 0; j < grid[0].length; j++){
if(grid[i][j] == 1){
ipos.add(i);
jpos.add(j);
}
}
}
int sum = 0;
// 計算縱坐標到縱坐標中點的距離,這裡不需要排序,因為之前統計時是按照i的順序
for(Integer pos : ipos){
sum += Math.abs(pos - ipos.get(ipos.size() / 2));
}
// 計算橫坐標到橫坐標中點的距離,這裡需要排序,因為統計不是按照j的順序
Collections.sort(jpos);
for(Integer pos : jpos){
sum += Math.abs(pos - jpos.get(jpos.size() / 2));
}
return sum;
}
}