Balanced Binary Tree

原題網址

[Updated on 2019.9.29]

可以提早檢查終止條件,若已不平衡,不需要再往下算,直接返回即可,可以節省遞迴所需的時間與空間。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public boolean isBalanced(TreeNode root) {
        return maxDepth(root) != -1;
    }

    public int maxDepth(TreeNode root) {
        if( root == null ) {
            return 0;
        }

        int left = maxDepth(root.left);
        if (left == -1) {
            return -1;
        }
        int right = maxDepth(root.right);
        if (right == -1) {
            return -1;
        }

        if(Math.abs(left-right) > 1 ) {
            return -1;
        }

        return Math.max(left, right) + 1;
    }
}

可利用修改過後的maxdepth程式來達到我們要的目的 ,因maxdepth可幫我們算出高度,
因此我們只要去比較高度是否差一即可,程式如下:

public class Solution {
    public boolean isBalanced(TreeNode root) {
        if (root == null) {
            return true;
        }
        return maxDepth(root) != -1;
    }

    public int maxDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int left = maxDepth(root.left);
        int right = maxDepth(root.right);

        if (left == -1 || right == -1 || Math.abs(left - right) > 1) {
            return -1;
        }
        return Math.max(left, right) + 1;
    }
}

時間複雜度:O(n)

public boolean isBalanced(TreeNode root) {
    return maxDepth(root) != -1;
}

public int maxDepth(TreeNode root) {
    if( root == null ) {
        return 0;
    }

    int left = maxDepth(root.left);
    int right = maxDepth(root.right);

    if( left == -1 || right == -1 || Math.abs(left-right) > 1 ) {
        return -1;
    }

    return Math.max(left, right) + 1;
}

results matching ""

    No results matching ""