Paint House II
題意:
There are a row of n houses, each house can be painted with one of the k colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.
The cost of painting each house with a certain color is represented by a n x k cost matrix. For example, costs[0][0] is the cost of painting house 0 with color 0; costs[1][2] is the cost of painting house 1 with color 2, and so on... Find the minimum cost to paint all houses.
Note: All costs are positive integers.
Follow up: Could you solve it in O(nk) runtime?
解題思路:
使用dp來幫忙解,此複雜度O(NKK)
dp[i][j] = min(dp[i - 1][k]) + costs[i][j], 0 <= k < colors && k != j
dp[i][j] 表示第i橦房子必塗第j顏色的最小成本是什麼。
程式碼如下:
public class Solution {
public int minCostII(int[][] costs) {
if (costs == null || costs.length == 0) {
return 0;
}
int houses = costs.length;
int colors = costs[0].length;
int[][] dp = new int[houses][colors];
for (int i = 0; i < colors; i++) {
dp[0][i] = costs[0][i];
}
for (int i = 1; i < houses; i++) {
for (int j = 0; j < colors; j++) {
dp[i][j] = Integer.MAX_VALUE;
for (int k = 0; k < colors; k++) {
if (k != j) {
dp[i][j] = Math.min(dp[i - 1][k] + costs[i][j], dp[i][j]);
}
}
}
}
int minCost = Integer.MAX_VALUE;
for (int i = 0; i < colors; i++) {
minCost = Math.min (dp[houses - 1][i], minCost);
}
return minCost;
}
}
O(NK)解法,只需要紀錄成本最小的兩個值。
public class Solution {
public int minCostII(int[][] costs) {
if (costs == null || costs.length == 0) {
return 0;
}
int houses = costs.length;
int colors = costs[0].length;
int[] dp = new int[colors];
int minOne = 0;
int minTwo = 0;
for (int i = 0; i < houses; i++) {
int oldMinOne = minOne;
int oldMinTwo = minTwo;
minOne = Integer.MAX_VALUE;
minTwo = Integer.MAX_VALUE;
for (int j = 0; j < colors; j++) {
if (dp[j] != oldMinOne || oldMinOne == oldMinTwo) {
dp[j] = oldMinOne + costs[i][j];
} else {
dp[j] = oldMinTwo + costs[i][j];
}
if (minOne <= dp[j]) {
minTwo = Math.min(minTwo, dp[j]);
} else {
minTwo = minOne;
minOne = dp[j];
}
}
}
return minOne;
}
}