Max Points in a Line
題意:找出同一條線上的最多點數,即找出最多相同斜率的點。
解決方法:固定一點不斷去與其他點算斜率,並使用一hash table來幫助我們記憶,另外要注意相同座標的點,使用duplicate變數來計算,程式碼如下,(有最後兩個case無法過,回頭再修正):
/**
* Definition for a point.
* class Point {
* int x;
* int y;
* Point() { x = 0; y = 0; }
* Point(int a, int b) { x = a; y = b; }
* }
*/
public class Solution {
public int maxPoints(Point[] points) {
if (points == null) {
return 0;
}
if (points.length <= 2) {
return points.length;
}
int len = points.length;
HashMap<Double, Integer> map = new HashMap<Double, Integer>();
int max = Integer.MIN_VALUE;
for (int i = 0; i < len; i++) {
int duplicate = 1;
int tempMax = 0;
double slope = 0.0;
map.clear();
Point A = points[i];
Point B;
for (int j = i + 1; j < len; j++) {
B = points[j];
if (i == j) {
continue;
}
// look 0.0+(double)(points[j].y-points[i].y)/(double)(points[j].x-points[i].x)
// because (double)0/-1 is -0.0, so we should use 0.0+-0.0=0.0 to solve 0.0 !=-0.0
// problem
if (A.x != B.x) {
slope = 0.0 + (double)(A.y - B.y) / (double)(A.x - B.x);
} else if ((A.x == B.x) && (A.y == B.y)) {
duplicate++;
continue;
} else if (A.x == B.x) {
slope = Integer.MAX_VALUE;
}
if (map.containsKey(slope)) {
map.put(slope, map.get(slope) + 1);
} else {
map.put(slope, 1);
}
if (map.get(slope) > tempMax) {
tempMax = map.get(slope);
}
}
max = (max > (tempMax + duplicate)) ? max : (tempMax + duplicate);
}
return max;
}
}
Time Complexity :$$O(N^{2})$$