Count of Smaller Numbers After Itself
題意:
You are given an integer array nums and you have to return a new counts array. The counts array has the property where counts[i] is the number of smaller elements to the right of nums[i].
Example:
Given nums = [5, 2, 6, 1]
To the right of 5 there are 2 smaller elements (2 and 1).
To the right of 2 there is only 1 smaller element (1).
To the right of 6 there is 1 smaller element (1).
To the right of 1 there is 0 smaller element.
Return the array [2, 1, 1, 0].
解題思路:
也可以用 Count of Smaller Numbers Before Itself 那個解法,只是從陣列的後面往前面加到線段樹,不過代碼量非常大,也容易出錯。
下面也是使用線段數來幫忙處理,但這裡參考到網友更精簡的解法,程式碼如下:
public class Solution {
public class SegmentTreeNode {
SegmentTreeNode left;
SegmentTreeNode right;
int val = 0;
int sum = 0;
int dup = 1;
public SegmentTreeNode (int val, int sum) {
this.val = val;
this.sum = sum;
}
}
public List<Integer> countSmaller(int[] nums) {
List<Integer> res = new ArrayList<>();
if (nums == null || nums.length == 0) {
return res;
}
int len = nums.length;
Integer[] ans = new Integer[len];
SegmentTreeNode root = null;
for (int i = len - 1; i >= 0; i--) {
root = insert(nums[i], root, ans, i, 0);
}
return Arrays.asList(ans);
}
private SegmentTreeNode insert(int num, SegmentTreeNode node, Integer[] ans, int i, int preSum) {
if (node == null) {
node = new SegmentTreeNode(num, 0);
ans[i] = preSum;
} else if (node.val == num) {
node.dup++;
ans[i] = preSum + node.sum;
} else if (node.val > num) {
node.sum++;
node.left = insert(num, node.left, ans, i, preSum);
} else {
node.right = insert(num, node.right, ans, i, preSum + node.dup + node.sum);
}
return node;
}
}