Minimum Height Tree
題意:
For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
Example 1:
Given n = 4, edges = [[1, 0], [1, 2], [1, 3]]
0
|
1
/ \
2 3
return [1]
Example 2:
Given n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2
\ | /
3
|
4
|
5
return [3, 4]
解題思路:
給定節點樹目與相連(edge)關係,我們要找出最小高度的樹之根節點,為了要讓樹高度行越小,我們盡量要讓degree高的當作root。
我們可以利用topological sort來不斷刪除indegree為1的節點,最後剩下的一層節點即是我們所要的root集合,其程式碼如下:
public class Solution {
public List<Integer> findMinHeightTrees(int n, int[][] edges) {
List<Integer> res = new ArrayList<>();
if (n == 1) {
res.add(0);
return res;
}
if (n == 0 || edges == null || edges.length == 0) {
return res;
}
List<Set<Integer>> adj = new ArrayList<>();
for (int i = 0; i < n; i++) {
adj.add(new HashSet<Integer>());
}
for (int[] edge : edges) {
adj.get(edge[0]).add(edge[1]);
adj.get(edge[1]).add(edge[0]);
}
List<Integer> leaves = new ArrayList<>();
for (int i = 0; i < n; i++) {
if (adj.get(i).size() == 1) {
leaves.add(i);
}
}
while (n > 2) {
n -= leaves.size();
List<Integer> newLeaves = new ArrayList<>();
for (int i : leaves) {
int j = adj.get(i).iterator().next();
adj.get(j).remove(i);
if (adj.get(j).size() == 1) {
newLeaves.add(j);
}
}
leaves = newLeaves;
}
return leaves;
}
}